Nanopore-Based Neurotransmitter Detection: Advances, Challenges, and Future Perspectives
Reviewartikel, 2025
Neurotransmitters play a pivotal role in neural communication, synaptic plasticity, and overall brain function. Disruptions in neurotransmitter homeostasis are closely linked to various neurological and neuropsychiatric disorders, including Alzheimer’s disease, Parkinson’s disease, epilepsy, schizophrenia, depression, and amyotrophic lateral sclerosis. This review explores the critical role of neurotransmitters in neurological disorders and highlights recent advances in nanopore-based neurotransmitter detection. Solid-state nanopores (SSNs), with their superior mechanical and chemical durability, have emerged as highly sensitive molecular sensors capable of real-time monitoring of neurotransmitter dynamics. We discuss the integration of SSNs into diagnostic frameworks, emphasizing their potential for early disease detection and personalized therapeutic interventions. Additionally, we examine the complementary role of nanopipettes in neurotransmitter detection, focusing on their high spatial resolution and real-time monitoring capabilities. The review also addresses the challenges and future perspectives of nanopore-based sensing technology, including the need for improved sensitivity, stability, and reproducibility. By integrating insights from neuroscience, bioengineering, and nanotechnology, this review aims to provide a comprehensive overview of how nanopore sensing can revolutionize neurotransmitter analysis and contribute to the development of next-generation diagnostic and therapeutic approaches for neurological diseases.
biosensor
neurotransmitter detection
nanopipette
acetylcholine
resistive pulse sensing
single-molecule detection
neurodegenerative disease
dopamine
solid-state nanopore
histamine