Integrating Uncertainty Into U-Net Robustness Evaluation Under Natural MRI Alterations: Application to Kidney Segmentation
Paper i proceeding, 2025

The adoption of deep learning (DL) for medical image segmentation in clinical practice is limited by interpretability issues and sensitivity to out-of-distribution data. Robust models that maintain stable accuracy while offering reliable uncertainty estimates in the presence of data variations should be required. We propose a framework to evaluate the robustness of U-Net-based segmentation on a kidney MRI dataset, simulating common abdominal MRI distortions. Robustness is assessed using a novel metric that evaluates both the network’s accuracy stability and uncertainty reliability. The results show that, while segmentation accuracy remains stable across alterations, uncertainty is more sensitive to these changes. This suggests that capturing also uncertainty offers a more comprehensive assessment of DL models than traditional accuracy-focused frameworks.

Segmentation

Robustness

Uncertainty

Kidney MRI

Författare

Rossella Damiano

Consiglo Nazionale Delle Richerche

Elisa Scalco

Consiglo Nazionale Delle Richerche

Marco L. Della Vedova

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Alberto Arrigoni

Istituto di Ricerche Farmacologiche Mario Negri

Anna Caroli

Istituto di Ricerche Farmacologiche Mario Negri

A. Bombarda

Universita degli Studi di Bergamo

Ettore Lanzarone

Universita degli Studi di Bergamo

Lecture Notes in Computer Science

0302-9743 (ISSN) 1611-3349 (eISSN)

Vol. 15735 LNAI 121-126
9783031958403 (ISBN)

23rd International Conference on Artificial Intelligence in Medicine, AIME 2025
Pavia, Italy,

Ämneskategorier (SSIF 2025)

Medicinsk bildvetenskap

Datavetenskap (datalogi)

Reglerteknik

DOI

10.1007/978-3-031-95841-0_23

Mer information

Senast uppdaterat

2025-07-16