Boltzmann priors for Implicit Transfer Operators
Paper i proceeding, 2025

Accurate prediction of thermodynamic properties is essential in drug discovery and materials science. Molecular dynamics (MD) simulations provide a principled approach to this task, yet they typically rely on prohibitively long sequential simulations. Implicit Transfer Operator (ITO) Learning offers a promising approach to address this limitation by enabling stable simulation with time steps orders of magnitude larger than MD. However, to train ITOs, we need extensive, unbiased MD data, limiting the scope of this framework. Here, we introduce Boltzmann Priors for ITO (BoPITO) to enhance ITO learning in two ways. First, BoPITO enables more efficient data generation, and second, it embeds inductive biases for long-term dynamical behavior, simultaneously improving sample efficiency by one order of magnitude and guaranteeing asymptotically unbiased equilibrium statistics. Furthermore, we showcase the use of BoPITO in a new tunable sampling protocol interpolating between ITOs trained on off-equilibrium simulations and an equilibrium model by incorporating unbiased correlation functions. Code is available at https://github.com/olsson-group/bopito.

Författare

Juan Viguera Diez

AstraZeneca AB

Göteborgs universitet

Chalmers, Data- och informationsteknik, Data Science och AI

Jacob Mathias Schreiner

Chalmers, Data- och informationsteknik, Data Science och AI

Göteborgs universitet

Ola Engkvist

Göteborgs universitet

AstraZeneca AB

Chalmers, Data- och informationsteknik, Data Science och AI

Simon Olsson

Göteborgs universitet

Chalmers, Data- och informationsteknik, Data Science och AI

13th International Conference on Learning Representations Iclr 2025

68862-68890
9798331320850 (ISBN)

13th International Conference on Learning Representations, ICLR 2025
Singapore, Singapore,

Ämneskategorier (SSIF 2025)

Bioinformatik (beräkningsbiologi)

Sannolikhetsteori och statistik

DOI

10.48550/arXiv.2410.10605

Mer information

Senast uppdaterat

2025-07-21