Curvature of an exotic 7-sphere
Artikel i vetenskaplig tidskrift, 2025

We study the geometry of the Gromoll–Meyer sphere, one of Milnor's exotic 7-spheres. We focus on a Kaluza–Klein Ansatz, with a round S4 as base space, unit S3 as fibre, and k=1,2 SU(2) instantons as gauge fields, where all quantities admit an elegant description in quaternionic language. The metric's moduli space coincides with the k=1,2 instantons' moduli space quotiented by the isometry of the base, plus an additional R+ factor corresponding to the radius of the base, r. We identify a “center” of the k=2 instanton moduli space with enhanced symmetry. This k=2 solution is used together with the maximally symmetric k=1 solution to obtain a metric of maximal isometry, SO(3)×O(2), and to explicitly compute its Ricci tensor. This allows us to put a bound on r to ensure positive Ricci curvature, which implies various energy conditions for an 8-dimensional static space-time. This construction then enables a concrete examination of the properties of the sectional curvature.

Exotic spheres

Kaluza–Klein metric

Energy conditions

Ricci curvature

Författare

David S. Berman

Queen Mary University of London

Martin Cederwall

Subatomär, högenergi- och plasmafysik

Tancredi Schettini Gherardini

Queen Mary University of London

Journal of Geometry and Physics

0393-0440 (ISSN)

Vol. 216 105590

Ämneskategorier (SSIF 2025)

Matematisk analys

Subatomär fysik

DOI

10.1016/j.geomphys.2025.105590

Mer information

Senast uppdaterat

2025-07-24