Prediction Models That Learn to Avoid Missing Values
Paper i proceeding, 2025

Handling missing values at test time is challenging for machine learning models, especially when aiming for both high accuracy and interpretability. Established approaches often add bias through imputation or excessive model complexity via missingness indicators. Moreover, either method can obscure interpretability, making it harder to understand how the model utilizes the observed variables in predictions. We propose missingness-avoiding (MA) machine learning, a general framework for training models to rarely require the values of missing (or imputed) features at test time. We create tailored MA learning algorithms for decision trees, tree ensembles, and sparse linear models by incorporating classifier-specific regularization terms in their learning objectives. The tree-based models leverage contextual missingness by reducing reliance on missing values based on the observed context. Experiments on real-world datasets demonstrate that MA-DT, MA-LASSO, MA-RF, and MA-GBT effectively reduce the reliance on features with missing values while maintaining predictive performance competitive with their unregularized counterparts. This shows that our framework gives practitioners a powerful tool to maintain interpretability in predictions with test-time missing values.

rule-based methods

decision trees

missing values

interpretablity

boosting

Författare

Lena Stempfle

Chalmers, Data- och informationsteknik, Data Science och AI

Göteborgs universitet

Anton Matsson

Göteborgs universitet

Chalmers, Data- och informationsteknik, Data Science och AI

Newton Mwai Kinyanjui

Chalmers, Data- och informationsteknik, Data Science och AI

Göteborgs universitet

Fredrik Johansson

Göteborgs universitet

Data Science och AI 3

Proceedings of Machine Learning Research

26403498 (eISSN)

Vol. 267

42nd International Conference on Machine Learning (ICML 2025)
Vancouver, Canada,

Ämneskategorier (SSIF 2025)

Datavetenskap (datalogi)

Mer information

Senast uppdaterat

2025-09-01