Towards Automated Eye Movement Characterization for Stroke Patients Using Synthetic Video Data and Machine Learning
Artikel i vetenskaplig tidskrift, 2025

Stroke is a critical medical emergency that can cause permanent disability or death. Rapid identification of stroke, especially in prehospital settings, is crucial for timely treatment. Video analysis and machine learning (ML) could facilitate the prehospital assessment of stroke, but a lack of video data from stroke patients remain a barrier to developing effective models. This study explores the use of synthetic data to develop ML models, generating 73 videos mimicking characteristic eye movements of stroke patients through 3D modeling and animation. Four ML models were developed. Long short-term memory (LSTM) and gated recurrent units (GRU) achieved the best performance (over 84% in accuracy, precision, sensitivity, specificity and F1-Score). These findings highlight the promise of synthetic data for developing ML models for healthcare applications and the potential of ML-driven video analysis in the automated assessment of stroke-related eye movements, supporting advancements in prehospital stroke care.

Stroke

eye movement

machine learning

synthetic data

video analysis

Författare

Hoor Jalo

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Eddie Ström

Student vid Chalmers

Samuel Ollila

Student vid Chalmers

Robin Khatiri

Student vid Chalmers

Jacob Westerberg

Student vid Chalmers

Teodor Svensson

Student vid Chalmers

Petra Redfors

Göteborgs universitet

Sahlgrenska universitetssjukhuset

Katarina Jood

Sahlgrenska universitetssjukhuset

Göteborgs universitet

Bengt-Arne Sjöqvist

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Stefan Candefjord

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Studies in health technology and informatics

09269630 (ISSN) 18798365 (eISSN)

Vol. 329 951-955

Ämneskategorier (SSIF 2025)

Neurovetenskaper

Neurologi

DOI

10.3233/SHTI250980

PubMed

40775998

Mer information

Senast uppdaterat

2025-08-27