Natural Language Interpretability for ML-Based QoT Estimation via Large Language Models
Paper i proceeding, 2025

As Machine Learning (ML) systems become integral to network management, the need for transparent decision-making grows. While post-hoc explainability methods provide insights into model behavior, their technical nature often limits accessibility. We explore Large Language Models (LLMs) for translating complex ML model explanations, extracted using explainable artificial intelligence frameworks, into natural language to simplify user understanding and interpretability. Using direct prompting and self-reflection-based prompting, we generate explanations for a lightpath Quality of Transmission (QoT) estimation model. Empirical evaluations confirm the correctness and usefulness of LLM-generated interpretations in about 65% of the cases, highlighting the benefits of self-reflection in enhancing explanation quality. The study also remarks on the necessity of devising enhancements to improve the results achieved so far.

Explainable Artificial Intelligence

Empirical Evaluation

Shapley Additive Explanations

Författare

Omran Ayoub

Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Sebastian Troia

Politecnico di Milano

Cristina Rottondi

Politecnico di Torino

Davide Andreoletti

Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)

F. Lelli

Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)

S. Giordano

Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

International Conference on Transparent Optical Networks

21627339 (ISSN)


9798331597771 (ISBN)

25th Anniversary International Conference on Transparent Optical Networks, ICTON 2025
Barcelona, Spain,

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Telekommunikation

Datorsystem

DOI

10.1109/ICTON67126.2025.11125132

Mer information

Senast uppdaterat

2025-09-23