Always Evolving: A Systematic Review on Challenges and Needs to Scale RL & FL on Industrial Embedded Systems
Paper i proceeding, 2026

Federated Learning (FL) and Reinforcement Learning (RL) show significant potential for industrial embedded systems, but their application is hindered by challenges like hardware constraints, data heterogeneity, and safety requirements, creating a research-practice gap. This systematic literature review synthesizes the state-of-the-art deployment of FL and RL on such systems, structuring findings across four challenge categories to identify research gaps. Our analysis of 61 studies reveals a dominance of simulation (66%), and FL (62%), with scarce hardware deployments (18%). The key barriers to industrial adoption are a lack of large-scale, real-world validation and unaddressed scalability challenges.

Federated Learning

edge computing

SLR

Reinforcement Learning

Författare

Emil Johansson

Volvo Group

Jan Bosch

Technische Universiteit Eindhoven

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Göteborgs universitet

Helena Holmström Olsson

Malmö universitet

Lecture Notes in Computer Science

0302-9743 (ISSN) 1611-3349 (eISSN)

Vol. 16082 LNCS 270-279
9783032041999 (ISBN)

51st Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2025
Salerno, Italy,

Ämneskategorier (SSIF 2025)

Programvaruteknik

Datavetenskap (datalogi)

Datorsystem

DOI

10.1007/978-3-032-04200-2_18

Mer information

Senast uppdaterat

2025-09-30