Exploring the Early Universe with Deep Learning
Paper i proceeding, 2026

Hydrogen is the most abundant element in our Universe. The first generation of stars and galaxies produced photons that ionized hydrogen gas, driving a cosmological event known as the Epoch of Reionization (EoR). The upcoming Square Kilometre Array Observatory (SKAO) will map the distribution of neutral hydrogen during this era, aiding in the study of the properties of these first-generation objects. Extracting astrophysical information will be challenging, as SKAO will produce a tremendous amount of data where the hydrogen signal will be contaminated with undesired foreground contamination and instrumental systematics. To address this, we develop some of the latest deep learning techniques to extract information from the 2D power spectra of the hydrogen signal expected from SKAO. We apply a series of neural network models to these measurements and quantify their ability to predict the history of cosmic hydrogen reionization, which is connected to the increasing number and efficiency of early photon sources. We show that the study of the early Universe benefits from modern deep learning technology. In particular, we demonstrate that dedicated machine learning algorithms can achieve more than a 0.95 R2 score on average in recovering the reionization history. This enables accurate and precise cosmological and astrophysical inference of structure formation in the early Universe.

CNN

Epoch of Reionization

21-cm signal

Machine Learning

Simulation-based inference

Cosmology & Astrophysics

Författare

Emmanuel de Salis

Haute Ecole Specialisee de Suisse occidentale

Massimo De Santis

Haute Ecole Specialisee de Suisse occidentale

Davide Piras

Université de Genève

Sambit K. Giri

Kungliga Tekniska Högskolan (KTH)

Michele Bianco

Eidgenössische Technische Hochschule Zürich (ETH)

Nicolas Cerardi

Ecole Polytechnique Federale de Lausanne (EPFL)

Philipp Denzel

Zürcher Hochschule für Angewandte Wissenschaften

Merve Selcuk-Simsek

Fachhochschule Nordwestschweiz

Kelley Michelle Hess

Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium

Maria Carmen Toribio Perez

Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium

Franz Kirsten

Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium

Hatem Ghorbel

Haute Ecole Specialisee de Suisse occidentale

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 16121 LNAI 426-438
9783032051752 (ISBN)

24th EPIA Conference on Artificial Intelligence, EPIA 2025,
Faro, Portugal,

Ämneskategorier (SSIF 2025)

Astronomi, astrofysik och kosmologi

DOI

10.1007/978-3-032-05176-9_33

Mer information

Senast uppdaterat

2025-10-01