Improving Performance in Neural Networks by Dendrite-Activated Connection
Paper i proceeding, 2025

We introduce a novel computational unit for neural networks featuring multiple biases, challenging the conventional perceptron structure. Designed to emphasize preserving uncorrupted information as it transfers from one unit to the next, this unit applies activation functions later in the process, incorporating specialized biases for each unit. We posit this unit as an improved design for neural networks and support this with (1) empirical evidence across diverse datasets; (2) a class of functions where this unit utilizes parameters more efficiently; and (3) biological analogies suggesting closer mimicry to natural neural processing. Source code is available at https://github.com/CuriosAI/dac-dev.

Författare

Carlo Metta

Istituto di Scienza e Tecnologie dell'Informazione A. Faedo

Marco Fantozzi

Universita degli Studi di Parma

Andrea Papini

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Gianluca Amato

Universita degli Studi Gabriele d'annunzio di Chieti-Pescara

Matteo Bergamaschi

Università di Padova

Andrea Fois

Universita degli Studi di Parma

Silvia Giulia Galfré

Universita di Pisa

Alessandro Marchetti

Universita degli Studi Gabriele d'annunzio di Chieti-Pescara

Michelangelo Vegliò

Universita degli Studi Gabriele d'annunzio di Chieti-Pescara

Maurizio Parton

Universita degli Studi Gabriele d'annunzio di Chieti-Pescara

Francesco Morandin

Universita degli Studi di Parma

Studies in Classification Data Analysis and Knowledge Organization

14318814 (ISSN) 21983321 (eISSN)

133-141
9783031847011 (ISBN)

14th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2023
Salerno, Italy,

Ämneskategorier (SSIF 2025)

Formella metoder

Datorteknik

Beräkningsmatematik

DOI

10.1007/978-3-031-84702-8_15

Mer information

Senast uppdaterat

2025-10-27