Semiclassical inequalities for Dirichlet and Neumann Laplacians on convex domains
Artikel i vetenskaplig tidskrift, 2025

We are interested in inequalities that bound the Riesz means of the eigenvalues of the Dirichlet and Neumann Laplacians in terms of their semiclassical counterpart. We show that the classical inequalities of Berezin–Li–Yau and Kröger, valid for Riesz exponents (Formula presented.), extend to certain values (Formula presented.), provided the underlying domain is convex. We also study the corresponding optimization problems and describe the implications of a possible failure of Pólya's conjecture for convex sets in terms of Riesz means. These findings allow us to describe the asymptotic behavior of solutions of a spectral shape optimization problem for convex sets.

Författare

Rupert L. Frank

California Institute of Technology (Caltech)

MCQST

Ludwig-Maximilians-Universität München (LMU)

Simon Larson

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Communications on Pure and Applied Mathematics

0010-3640 (ISSN) 1097-0312 (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Matematisk analys

DOI

10.1002/cpa.70019

Mer information

Senast uppdaterat

2025-10-31