Data Annotation: A Requirements Engineering for Machine Learning Systems Perspective
Paper i proceeding, 2025

Data annotation, the systematic labeling of raw data (e.g., images, text) [1] , is foundational to the training of machine learning (ML) models, particularly in supervised learning. While data's importance is clear, the specific processes and requirements for how this data should be annotated, appear inconsistently defined or informal within existing ML software system (MLS) development methodologies [2]. The effective specification of data annotation requirements, the challenges involved, and the traceability from system requirements to annotation activities represent critical considerations in the ML development lifecycle. Understanding these aspects is pertinent for AI/ML engineers and data scientists, requirements engineers, and organizations developing AI solutions.

machine learning system

requirements engineering

data annotation

Författare

Yi Peng

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Göteborgs universitet

Hina Saeeda

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Göteborgs universitet

Hans-Martin Heyn

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Göteborgs universitet

Jennifer Horkoff

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Göteborgs universitet

Proceedings of the IEEE International Conference on Requirements Engineering

1090705X (ISSN) 23326441 (eISSN)

572-575
9798331524135 (ISBN)

33rd IEEE International Requirements Engineering Conference, RE 2025
Valencia, Spain,

Ämneskategorier (SSIF 2025)

Programvaruteknik

DOI

10.1109/RE63999.2025.00053

Mer information

Senast uppdaterat

2025-11-06