Boosting Ion Transport and Stability in Halide Solid Electrolytes via S and F Codoping
Artikel i vetenskaplig tidskrift, 2025

Structural and compositional modification of solid-state electrolytes (SSEs) is a common approach to improve ionic conductivity and interfacial stability, yet the mechanisms remain unclear. Here, we studied Li2ZrCl6 (LZC) codoped with sulfur (S) and fluorine (F). X-ray and neutron diffraction with bond valence site energy (BVSE) simulations reveal that codopant-induced lattice distortion facilitates ion transport. The S/F codoped sample achieves a room-temperature ionic conductivity of 0.51 mS cm-1, twice that of pristine LZC (0.26 mS cm-1). Advanced characterizations further show that S and F participate in forming the solid electrolyte interphase (SEI), enhancing the electrode interfacial stability. As a result, solid-state batteries with the codoped SSE deliver capacity retentions of 97.1% at 0.1 C and 82.8% at 0.5 C. This study demonstrates the synergistic effects of structural modulation on ionic conduction and SEI formation, providing insights for designing high-performance SSEs.

Solid electrolytes

Ionic conductivity

Halogens

Inorganic compounds

Batteries

Författare

Priya Ganesan

Karlsruher Institut für Technologie (KIT)

Helmholtz Institute Ulm

Ramon Zimmermanns

Helmholtz Institute Ulm

Karlsruher Institut für Technologie (KIT)

Guillaume Navallon

Helmholtz Institute Ulm

Karlsruher Institut für Technologie (KIT)

Yang Hu

Karlsruher Institut für Technologie (KIT)

Helmholtz Institute Ulm

Thomas Diemant

Karlsruher Institut für Technologie (KIT)

Helmholtz Institute Ulm

Gabriel J. Cuello

Institut Laue-Langevin

Ines Puente Orench

Institut Laue-Langevin

Blanka Detlefs

European Synchrotron Radiation Facility (ESRF)

Ritambhara Gond

Chalmers, Elektroteknik, Elkraftteknik

Alberto Varzi

Helmholtz Institute Ulm

Karlsruher Institut für Technologie (KIT)

Jianneng Liang

Karlsruher Institut für Technologie (KIT)

Helmholtz Institute Ulm

Maximilian Fichtner

Helmholtz Institute Ulm

Karlsruher Institut für Technologie (KIT)

ACS Energy Letters

23808195 (eISSN)

Vol. 10 11

Ämneskategorier (SSIF 2025)

Materialkemi

Oorganisk kemi

DOI

10.1021/acsenergylett.5c02729

Mer information

Senast uppdaterat

2025-12-12