Quantum confinement and coherent transport in ultrathin Bi2Se3 nanoribbons
Artikel i vetenskaplig tidskrift, 2025

In recent years much progress has been made in realizing topological insulator (TI) nanostructures where the reduced dimensions should help to diminish the contributions from bulk carriers and enhance quantum confinement. Though nm thick 3D-TI nanoribbons exhibiting topological properties are still difficult to reproducibly synthesize. Here we demonstrate the growth of ultrathin Bi2Se3 nanoribbons by a simple catalyst-free physical-vapour deposition, where the tuning of the material evaporation time plays a crucial role in determining the ultimate thickness of the nanoribbons. Magnetotransport and Hall effect measurements show that at thicknesses close to 10 nm the transport features are affected by Altshuler-Aronov-Spivak like coherent orbits at low magnetic fields, while Shubnikov-de Haas oscillations take over at high fields. The observed phenomena originate from the topological surface states and dominate the nanoribbon transport. Ultrathin nanoribbons also show pronounced conductance oscillations as a function of gate voltage, that can be attributed to ballistic transport and quantized sub-bands. The results highlight the importance of material growth to exploit the unique properties of topological surface states, establishing 3D-TI nanoribbons as a promising platform for a variety of novel applications.

Magnetotransport

Topological materials

Quantum interference effects

Författare

Kiryl Niherysh

Kvantkomponentfysik doktorander/postdocs

Xavier Palermo

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Ananthu Pullukattuthara Surendran

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Raitis Sondors

Latvijas Universitate

Jana Andzane

Latvijas Universitate

Donats Erts

Latvijas Universitate

Thilo Bauch

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Floriana Lombardi

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 15 1 38272

Ämneskategorier (SSIF 2025)

Materialkemi

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

DOI

10.1038/s41598-025-23622-7

PubMed

41174276

Mer information

Senast uppdaterat

2025-11-14