Efficiency enhancement and chrono-photoelectron generation in dye-sensitized solar cells based on spin-coated TiO2 nanoparticle multilayer photoanodes and a ternary iodide gel polymer electrolyte
Artikel i vetenskaplig tidskrift, 2023

The effect of the thickness of a multilayer TiO2 photoanode on the performance of a dye-sensitized solar cell (DSC) made with a polyethylene oxide-based gel polymer electrolyte containing ternary iodides and performance enhancer 4-tert-butylpyridine is studied. Multilayer photoanodes consisting of up to seven layers of TiO2 nano-particles (13 nm and 21 nm) are prepared by spin coating of successive layers. XRD results confirm the predominant presence of the anatase phase of TiO2 in the multilayer structure after sintering. The SEM images reveal the formation of a single TiO2 film upon sintering due to merging of individually deposited layers. The photocurrent density (J SC) and the efficiency increase with the number of TiO2 layers exhibiting the maximum efficiency and JSC of 5.5% and 12.5 mA cm−2, respectively, for the 5-layered electrode of total thickness 4.0 µm with a 9.66 × 10–8 mol cm−2 surface dye concentration. The present study introduces a method of determining the rate of effective photoelectron generation and the average time gap between two successive photon absorptions where the respective results are 1.34 molecule−1 s−1 and 0.74 s for the most efficient cell studied in this work.

Författare

T M W J Bandara

University of Peradeniya

S. M.S. Gunathilake

University of Peradeniya

G. B.M.M.M. Nishshanke

University of Peradeniya

M. A. K. L. Dissanayake

National Institute of Fundamental Studies

Nandu B. Chaure

Savitribai Phule Pune University

O. I. Olusola

Federal University of Technology Akure

Bengt-Erik Mellander

Subatomär, högenergi- och plasmafysik

Maurizio Furlani

Göteborgs universitet

Ingvar Albinsson

Göteborgs universitet

Journal of Materials Science: Materials in Electronics

0957-4522 (ISSN) 1573-482X (eISSN)

Vol. 34 28 1969

Ämneskategorier (SSIF 2025)

Materialkemi

Fysikalisk kemi

Styrkeområden

Energi

Materialvetenskap

DOI

10.1007/s10854-023-11252-6

Mer information

Senast uppdaterat

2025-11-17