Using Role-Specialized LLM Agents for Workflow Execution in a Product Development Setting
Paper i proceeding, 2025

Many product development tasks require multi-step reasoning and decision-making that exceed the capabilities of Large Language Models (LLMs) operating in isolation. This research introduces a framework for constructing multi-agent systems (MAS) with LLMs for product development and presents an empirical study of its effectiveness. By decomposing workflows into subtasks handled by role-specialized agents, the system leverages agentic design principles and outperforms isolated model outputs. We evaluate this approach using LLaMA-3.1 (8B) and Gemma 2.0 (9B) in a realistic engineering scenario. While enabling more complex problem solving, the MAS also introduces challenges in transparency and fault tracing across input-output chains. Our findings highlight trade-offs and the need for further research on design practices for reliable agentic AI systems in industrial settings.

Product Development

Automation

Large Language Models

Agentic AI

Multi Agent System

Författare

Maximilian Kretzschmar

Technische Universität Dresden

Alexander Gundermann

Technische Universität Dresden

Jan Mehlstaubl

Ai Center of Enablement

Alejandro Pradas Gómez

Chalmers, Industri- och materialvetenskap, Produktutveckling

Bernhard Saske

Technische Universität Dresden

Kristin Paetzold-Byhain

Technische Universität Dresden

Proceedings of the 9th International Conference on Inventive Systems and Control Icisc 2025

642-650
9798331512477 (ISBN)

9th International Conference on Inventive Systems and Control, ICISC 2025
Coimbatore, India,

Ämneskategorier (SSIF 2025)

Programvaruteknik

Datavetenskap (datalogi)

DOI

10.1109/ICISC65841.2025.11188152

Mer information

Senast uppdaterat

2025-11-17