Diversity-Aware Reinforcement Learning for de novo Drug Design
Paper i proceeding, 2025

Fine-tuning a pre-trained generative model has demonstrated good performance in generating promising drug molecules. The fine-tuning task is often formulated as a reinforcement learning problem, where previous methods efficiently learn to optimize a reward function to generate potential drug molecules. Nevertheless, in the absence of an adaptive update mechanism for the reward function, the optimization process can become stuck in local optima. The efficacy of the optimal molecule in a local optimization may not translate to usefulness in the subsequent drug optimization process or as a potential standalone clinical candidate. Therefore, it is important to generate a diverse set of promising molecules. Prior work has modified the reward function by penalizing structurally similar molecules, primarily focusing on finding molecules with higher rewards. To date, no study has comprehensively examined how different adaptive update mechanisms for the reward function influence the diversity of generated molecules. In this work, we investigate a wide range of intrinsic motivation methods and strategies to penalize the extrinsic reward, and how they affect the diversity of the set of generated molecules. Our experiments reveal that combining structure- and prediction-based methods generally yields better results in terms of diversity

Exploration

Reinforcement Learning

de novo Drug Design

Författare

Hampus Gummesson Svensson

AstraZeneca AB

Göteborgs universitet

Chalmers, Data- och informationsteknik, Data Science och AI

Christian Tyrchan

AstraZeneca AB

Ola Engkvist

Chalmers, Data- och informationsteknik, Data Science och AI

Göteborgs universitet

AstraZeneca AB

Morteza Haghir Chehreghani

Data Science och AI 2

Göteborgs universitet

IJCAI International Joint Conference on Artificial Intelligence

10450823 (ISSN)

9194-9204
978-1-956792-06-5 (ISBN)

Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2025
Montreal, Canada,

Styrkeområden

Informations- och kommunikationsteknik

Hälsa och teknik

Ämneskategorier (SSIF 2025)

Datavetenskap (datalogi)

Läkemedel- och medicinsk processbioteknik

Artificiell intelligens

Infrastruktur

Chalmers e-Commons (inkl. C3SE, 2020-)

DOI

10.24963/ijcai.2025/1022

ISBN

9781956792065

Mer information

Senast uppdaterat

2025-11-24