Effects of Serum Incubation on Lipid Nanoparticle PEG Shedding, mRNA Retention, and Membrane Interactions
Artikel i vetenskaplig tidskrift, 2025

Lipid nanoparticles (LNPs) are widely used for RNA delivery, but their efficiency remains limited, largely due to poor endosomal escape. Upon administration, proteins bind to the surface of the LNPs, influencing cellular uptake and potentially altering their interfacial properties. Such alterations may also affect their interaction with endosomal membranes, thus influencing the critical endosomal escape step. Using fluorescence microscopy imaging with single-LNP resolution, this study investigates how incubation in 10% fetal bovine serum alters the PEG modification and mRNA content of LNPs, as well as how serum incubation-induced alterations influence the interaction between LNPs and an anionic supported lipid bilayer (SLB), serving as a simplistic mimic for the anionic lipid membrane of late endosomes. We demonstrate that serum incubation leads to the desorption of PEG-modified lipids and a significant release of mRNA cargo from the LNPs. PEG shedding occurred consistently with a half-life time of around 10 min, while mRNA release displayed higher variability between individual LNPs. We also observed that serum preincubation enhanced attractive interactions between tethered LNPs and the anionic SLB at physiological pH 7.4, and fusion of LNPs with the anionic SLB upon pH reduction was more efficient for serum-preincubated LNPs than for their pristine counterparts, particularly during moderate acidification from pH 6.5 to 6.0. This enhanced fusion efficiency may be attributed to a reduced steric hindrance from PEG-lipids following serum preincubation. The findings highlight that serum-induced modifications enhance LNP fusion efficiency with an endosomal membrane mimic while potentially compromising mRNA retention, thus balancing the overall efficacy of LNP-assisted mRNA delivery.

endosomal membrane mimic

mRNA delivery

PEG shedding

endosomalescape

lipid nanoparticle (LNP)

protein corona

Författare

Simon Niederkofler

Chalmers, Fysik, Nano- och biofysik

Petteri Parkkila

Chalmers, Fysik, Nano- och biofysik

Nima Aliakbarinodehi

Chalmers, Fysik, Nano- och biofysik

Nima Sasanian

Chalmers, Fysik, Nano- och biofysik

Gustav Emilsson

AstraZeneca AB

David Ulkoski

AstraZeneca AB

Celso J. O. Ferreira

Laboratório Ibérico Internacional de Nanotecnologia INL

Nicole Stephanie Galenkamp

Lunds universitet

Bruno F. B. Silva

Laboratório Ibérico Internacional de Nanotecnologia INL

Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa)

Dan Lundberg

AstraZeneca AB

Yujia Jing

AstraZeneca AB

Lennart Lindfors

AstraZeneca AB

Björn Agnarsson

Chalmers, Fysik, Nano- och biofysik

Fredrik Höök

Chalmers, Fysik, Nano- och biofysik

ACS Applied Materials & Interfaces

1944-8244 (ISSN) 1944-8252 (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Molekylärbiologi

Cellbiologi

Fysikalisk kemi

DOI

10.1021/acsami.5c17052

PubMed

41234148

Mer information

Senast uppdaterat

2025-11-27