CaloChallenge 2022: a community challenge for fast calorimeter simulation
Reviewartikel, 2025

We present the results of the 'Fast Calorimeter Simulation Challenge 2022'-the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows, diffusion models, and models based on conditional flow matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in one-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.Report Numbers: HEPHY-ML-24-05, FERMILAB-PUB-24-0728-CMS, TTK-24-43.

calorimeter

generative AI

machine learning

simulation

CaloChallenge 2022

Författare

Claudius Krause

Österreichische Akademie der Wissenschaften

Universität Heidelberg

Michele Faucci Giannelli

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Istituto Nazionale di Fisica Nucleare

Gregor Kasieczka

Universität Hamburg

Benjamin Nachman

Lawrence Berkeley National Laboratory

Dalila Salamani

CERN

David Shih

Rutgers University

Anna Zaborowska

CERN

Oz Amram

Fermi National Accelerator Laboratory

Kerstin Borras

Deutsches Elektronen-Synchrotron (DESY)

RWTH Aachen University

Matthew R. Buckley

Rutgers University

Erik Buhmann

Universität Hamburg

Thorsten Buss

Deutsches Elektronen-Synchrotron (DESY)

Universität Hamburg

Renato Paulo Da Costa Cardoso

CERN

Anthony L. Caterini

Layer 6 AI

Nadezda Chernyavskaya

CERN

Federico A.G. Corchia

Universita di Bologna

Istituto Nazionale di Fisica Nucleare

Jesse C. Cresswell

Layer 6 AI

Sascha Diefenbacher

Lawrence Berkeley National Laboratory

Etienne Dreyer

Weizmann Institute of Science

Vijay Ekambaram

IBM

Engin Eren

Deutsches Elektronen-Synchrotron (DESY)

Florian Ernst

CERN

Institut für Theoretische Physik Heidelberg

Luigi Favaro

Universität Heidelberg

Matteo Franchini

Universita di Bologna

Istituto Nazionale di Fisica Nucleare

Frank Gaede

Deutsches Elektronen-Synchrotron (DESY)

Eilam Gross

Weizmann Institute of Science

Shih Chieh Hsu

University of Washington

Kristina Jaruskova

CERN

Benno Käch

Universität Hamburg

Deutsches Elektronen-Synchrotron (DESY)

Jayant Kalagnanam

IBM

Raghav Kansal

Fermi National Accelerator Laboratory

California Institute of Technology (Caltech)

Taewoo Kim

Layer 6 AI

Dmitrii Kobylianskii

Weizmann Institute of Science

Anatolii Korol

Deutsches Elektronen-Synchrotron (DESY)

William Korcari

Universität Hamburg

Dirk Krücker

Deutsches Elektronen-Synchrotron (DESY)

Katja Krüger

Deutsches Elektronen-Synchrotron (DESY)

Marco Letizia

Università degli Studi di Genova

Istituto Nazionale di Fisica Nucleare

Shu Li

Shanghai Jiao Tong University

Qibin Liu

Shanghai Jiao Tong University

Xiulong Liu

University of Washington

Gabriel Loaiza-Ganem

Layer 6 AI

Thandikire Madula

University College London (UCL)

Peter McKeown

Deutsches Elektronen-Synchrotron (DESY)

CERN

Isabell A. Melzer-Pellmann

Deutsches Elektronen-Synchrotron (DESY)

Vinicius Mikuni

Lawrence Berkeley National Laboratory

Nam Nguyen

IBM

Ayodele Ore

Universität Heidelberg

Sofia Palacios Schweitzer

Universität Heidelberg

Ian Pang

Rutgers University

Kevin Pedro

Fermi National Accelerator Laboratory

Tilman Plehn

Universität Heidelberg

Witold Pokorski

CERN

Huilin Qu

CERN

Piyush Raikwar

CERN

John A. Raine

Université de Genève

Humberto Reyes-Gonzalez

RWTH Aachen University

Università degli Studi di Genova

Istituto Nazionale di Fisica Nucleare

Lorenzo Rinaldi

Istituto Nazionale di Fisica Nucleare

Universita di Bologna

Brendan Leigh Ross

Layer 6 AI

Moritz A.W. Scham

Deutsches Elektronen-Synchrotron (DESY)

Forschungszentrum Jülich

RWTH Aachen University

Simon Schnake

RWTH Aachen University

Deutsches Elektronen-Synchrotron (DESY)

Chase Shimmin

Yale University

Eli Shlizerman

University of Washington

Nathalie Soybelman

Weizmann Institute of Science

Mudhakar Srivatsa

IBM

Kalliopi Tsolaki

CERN

Sofia Vallecorsa

CERN

Kyongmin Yeo

IBM

Rui Zhang

Nanjing University

University of Wisconsin Madison

Reports on Progress in Physics

0034-4885 (ISSN) 1361-6633 (eISSN)

Vol. 88 11

Ämneskategorier (SSIF 2025)

Datorsystem

DOI

10.1088/1361-6633/ae1304

PubMed

41086821

Relaterade dataset

Fast Calorimeter Simulation Challenge 2022 - Dataset 1 [dataset]

URI: https://zenodo.org/records/8099322

Mer information

Senast uppdaterat

2025-11-28