Z-critical connections and Bridgeland stability conditions
Artikel i vetenskaplig tidskrift, 2024

We associate geometric partial differential equations on holomorphic vector bundles to Bridgeland stability conditions. We call solutions to these equations Z-critical connections, with Z a central charge. Deformed Hermitian Yang-Mills connections are a special case. We explain how our equations arise naturally through infinite dimensional moment maps. Our main result shows that in the large volume limit, a sufficiently smooth holomorphic vector bundle admits a Z-critical connection if and only if it is asymptotically Z-stable. Even for the deformed Hermitian Yang-Mills equation, this provides the first examples of solutions in higher rank.

Författare

Ruadhaí Dervan

University of Glasgow

John Benjamin McCarthy

Imperial College London

Lars Martin Sektnan

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

CAMBRIDGE JOURNAL OF MATHEMATICS

2168-0930 (ISSN) 2168-0949 (eISSN)

Vol. 12 2 253-355

Ämneskategorier (SSIF 2025)

Geometri

Matematisk analys

DOI

10.4310/CJM.2024.v12.n2.a1

Mer information

Senast uppdaterat

2025-12-04