From Machine Learning Documentation to Requirements: Bridging Processes with Requirements Languages
Paper i proceeding, 2026

In software engineering processes for machine learning (ML)-enabled systems, integrating and verifying ML components is a major challenge. A prerequisite is the specification of ML component requirements, including models and data, an area where traditional requirements engineering (RE) processes face new obstacles. An underexplored source of RE-relevant information in this context is ML documentation such as ModelCards and DataSheets. However, it is uncertain to what extent RE-relevant information can be extracted from these documents. This study first investigates the amount and nature of RE-relevant information in 20 publicly available ModelCards and DataSheets. We show that these documents contain a significant amount of potentially RE-relevant information. Next, we evaluate how effectively three established RE representations (EARS, Rupp’s template, and Volere) can structure this knowledge into requirements. Our results demonstrate that there is a pathway to transform ML-specific knowledge into structured requirements, incorporating ML documentation in software engineering processes for ML systems.

Machine Learning

Model Cards

Software Processes

Requirements Engineering

AI Engineering

Data Sheets

Författare

Yi Peng

Göteborgs universitet

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Hans-Martin Heyn

Göteborgs universitet

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Jennifer Horkoff

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Göteborgs universitet

Lecture Notes in Computer Science

0302-9743 (ISSN) 1611-3349 (eISSN)

Vol. 16361 LNCS 119-136
9783032120885 (ISBN)

26th International Conference on Product-Focused Software Process Improvement, PROFES 2025
Salerno, Italy,

Ämneskategorier (SSIF 2025)

Programvaruteknik

Datavetenskap (datalogi)

Annan data- och informationsvetenskap

DOI

10.1007/978-3-032-12089-2_8

Mer information

Senast uppdaterat

2025-12-08