Estimating traffic flows from vehicle trajectories based on sparse mobile phone geolocation data
Poster (konferens), 2025

Large-scale empirical traffic flow data are useful in spatial planning, transport research, and data-driven decision making, but existing data, collected using traffic sensors or counts, lack spatio-temporal coverage and granularity. Mobile phone geolocation data are promising for capturing traffic flows at scale given their size, granularity, and coverage, but their potential for such cases remains unexplored. We investigate how traffic flows with high spatial and temporal coverage and granularity can be estimated from vehicle trajectories based on sparse mobile phone geolocation data.

traffic flows

mobile phone traces

spatial analysis

Författare

Roos Teeuwen

Chalmers, Arkitektur och samhällsbyggnadsteknik, Stadsbyggnad

Jorge Gil

Chalmers, Arkitektur och samhällsbyggnadsteknik, Stadsbyggnad

NetMob 2025
Paris, France,

FlowSense: High-Resolution Empirical Traffic Flow Data for Research and Decision Making

Chalmers, 2025-01-01 -- 2026-12-31.

Styrkeområden

Transport

Ämneskategorier (SSIF 2025)

Transportteknik och logistik

Datavetenskap (datalogi)

Annan data- och informationsvetenskap

Relaterade dataset

FlowSense Traffic Flows - estimated from vehicle trajectories based on sparse mobile phone geolocation data [dataset]

URI: https://zenodo.org/records/16794871 DOI: https://doi.org/10.5281/zenodo.16794871

Mer information

Senast uppdaterat

2025-12-10