Spatio-temporal multi-head graph attention network for power forecasting of regional photovoltaic plants
Artikel i vetenskaplig tidskrift, 2026

Improved prediction accuracy of regional photovoltaic (PV) generation significantly enhances multi-area coordination efficiency in modern power systems. This paper proposes a novel PV power forecasting model IIMGAT that integrates Improved Variational Mode Decomposition (IVMD), an improved Time-series Mixer architecture (Tsmixer), and a multi-head Graph Attention Network (GAT). First, the IVMD effectively extracts the key trend components from PV data as model inputs to mitigate interference from abrupt cloud cover changes. An innovative spatiotemporal dual-design framework is then employed to capture temporal patterns and extract spatial features. The proposed IIMGAT model achieves high precision forecasting by comprehensively capturing spatio-temporal correlations among regional PV power stations. The proposed model achieves R2 values of 0.981 and 0.991 on the PVOD and DKASC datasets, respectively. The values of R2 indicate the model’s high robustness.

Improved time-series mixer

Variational mode decomposition

Graph attention network

PV power forecast

Författare

Jingjing Xie

Northwestern Polytechnical University

Yan Ma

Northwestern Polytechnical University

Conghao Wang

Northwestern Polytechnical University

Yanting Wang

Northwestern Polytechnical University

Sen Yang

Beijing Institute of Technology

Quan Ouyang

Chalmers, Elektroteknik, System- och reglerteknik

Nanjing University of Aeronautics and Astronautics

Solar Energy

0038-092X (ISSN)

Vol. 304 114202

Ämneskategorier (SSIF 2025)

Annan elektroteknik och elektronik

Datavetenskap (datalogi)

DOI

10.1016/j.solener.2025.114202

Mer information

Senast uppdaterat

2025-12-23