A Unified Siamese Learning Framework for Zero-Day Anomaly Detection and Classification in Optical Networks
Paper i proceeding, 2025

A multi-similarity Siamese neural network unifies zero-day anomaly detection and one-shot classification in optical networks, achieving over 99% accuracy and instant adaptability across lightpaths and unseen anomaly types without any retraining.

Anomaly detection

Contrastive learning

Artificial intelligence

Anomaly classification

Machine learning

Optical networks

Författare

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Flávia Pessoa Monteiro

Federal University of Western Pará (UFOPA)

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Proceedings of the Optical Fiber Communication Conference (OFC) 2026

M3A

Optical Fiber Communication Conference (OFC) 2026
Los Angeles, CA, USA,

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Datavetenskap (datalogi)

Telekommunikation

Relaterade dataset

Optical network soft failure dataset [dataset]

URI: https://data.mendeley.com/datasets/y3pspy7j83/1 DOI: 10.17632/y3pspy7j83.1

Mer information

Skapat

2025-12-22