THE SECOND VARIATION OF ANALYTIC TORSION ON TEICHMÜLLER SPACE
Artikel i vetenskaplig tidskrift, 2025

Let pi : X -> T be the Teichm & uuml;ller curve over the Teichm & uuml;ller space T, where each fiber Xy is the Riemann surface of genus g >= 2 corresponding to the point y is an element of T. In this paper, we study the direct image bundle E-k = pi(& lowast;)(L-k circle times K-X/T), naturally equipped with an L-2-metric, where L is a relatively ample line bundle over X and restricts to a rational power of the canonical bundle on each fiber. We analyze the asymptotic behavior of the curvature of the induced L-2-metric on the determinant line bundle det E-k as k ->infinity. As a consequence, we show that the second variation of the logarithmic analytic torsion log tau(k)(partial derivative) decays faster than any polynomial rate.

determinant line bundle

Bergman kernel

direct image bundle

Analytic torsion

Quillen metric

Teichm & uuml

constant scalar curvature

ller space

Författare

Xueyuan Wan

Chongqing University of Technology

Genkai Zhang

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Asian Journal of Mathematics

1093-6106 (ISSN) 19450036 (eISSN)

Vol. 29 4 423-440

Representationer av Liegrupper. Harmonisk och komplex analys på symmetriska och lokalt symmetriska rum

Vetenskapsrådet (VR), 2019-01-01 -- 2022-12-31.

Vetenskapsrådet (VR) (2022-02861), 2023-01-01 -- 2026-12-31.

Ämneskategorier (SSIF 2025)

Geometri

Matematisk analys

Mer information

Senast uppdaterat

2026-01-14