Boosting superconductivity in ultrathin YBa2Cu3O7−δ films via nanofaceted substrates
Artikel i vetenskaplig tidskrift, 2026

In cuprate high-temperature superconductors the doping level is fixed during synthesis, hence the charge carrier density per CuO2 plane cannot be easily tuned by conventional gating, unlike in 2D materials. Strain engineering has recently emerged as a powerful tuning knob for manipulating the properties of cuprates, in particular charge and spin orders, and their delicate interplay with superconductivity. In thin films, additional tunability can be introduced by the substrate surface morphology, particularly nanofacets formed by substrate surface reconstruction. Here we show a remarkable enhancement of the superconducting onset temperature Tcon and the upper critical magnetic field Hc,2 in nanometer-thin YBa2Cu3O7−δ films grown on a substrate with a nanofaceted surface. We theoretically show that the enhancement is driven by electronic nematicity and unidirectional charge density waves, where both elements are captured by an additional effective potential at the interface between the film and the uniquely textured substrate. Our findings show a new paradigm in which substrate engineering can effectively enhance the superconducting properties of cuprates. This approach opens an exciting frontier in the design and optimization of high-performance superconducting materials.

Författare

Eric Wahlberg

RISE Research Institutes of Sweden

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Riccardo Arpaia

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Universita Ca' Foscari Venezia

Debmalya Chakraborty

Indian Institute of Science

Birla Institute of Technology and Science-Pilani

Uppsala universitet

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

David Vignolles

LCMI Laboratoire des Champs Magnetiques Intenses

Cyril Proust

LCMI Laboratoire des Champs Magnetiques Intenses

Annica M. Black-Schaffer

Uppsala universitet

Thilo Bauch

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Götz Seibold

Brandenburgische Technische Universität

Floriana Lombardi

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 17 1 285

Kvantfluktuationer och Kvantsammanflätning i Högtemperatursupraledare

Vetenskapsrådet (VR) (2020-05184), 2021-01-01 -- 2024-12-31.

Resonant inelastisk röntgenspridning för att studera förändringar i högtemperatursupraledares fasdiagram orsakade av mekanisk påfrestning och inneslutning

Vetenskapsrådet (VR) (2020-04945), 2021-01-01 -- 2024-12-31.

Undersökning av kvantsammanflätade materia i högtemperatursupraledare nano-kretsar

Vetenskapsrådet (VR) (2022-04334), 2023-01-01 -- 2026-12-31.

HIGH-TC JOSEPHSON NEURONS AND SYNAPSES: TOWARDS ULTRAFAST AND ENERGY EFFICIENT SUPERCONDUCTING NEUROMORPHIC COMPUTING

Europeiska kommissionen (EU) (EC/HE/101130224), 2024-05-01 -- 2028-04-30.

Ämneskategorier (SSIF 2025)

Materialkemi

Oorganisk kemi

Den kondenserade materiens fysik

Infrastruktur

Myfab (inkl. Nanotekniklaboratoriet)

DOI

10.1038/s41467-025-67500-2

PubMed

41501025

Relaterade dataset

Boosting superconductivity in ultrathin YBa2Cu3O7−δ films via nanofaceted substrates [dataset]

DOI: https://doi.org/10.5281/zenodo.17578632.

Mer information

Senast uppdaterat

2026-01-23