Towards Controlled Growth and Applications of Carbon Nanotubes
Doktorsavhandling, 2005

This thesis deals with growth, characterization and application of carbon nanotubes. The methods involved in the production of carbon nanotubes are thermal chemical vapor deposition (T-CVD) and plasma enhanced chemical vapor deposition (PE-CVD). Thermal-CVD has been successfully employed in synthesis of single wall carbon nanotubes (SWCNT) and multi wall carbon nanotubes (MWCNT). The understanding of the MWCNT growth was performed by studying the effects of influential parameters such as: carbon feedstock molec?les, size of catalytic iron (Fe) particles and temperature. A growth mechanism for MWCNT was proposed. Using the PE-CVD method we investigated the growth of MWCNT catalyzed by Fe and of vertically aligned carbon nanofibers (VACNFs) catalyzed by nickel (Ni). Using Fe as a catalyst, carbon nanotube carpet-like films were grown with exceptionally high growth rate. The selective growth of individual VANCFs within a hole etched in Si is demonstrated. The Ni catalyzed growth of VACNFs was investigated for different metal underlayers, namely: Pt, Pd, Ti, Mo, W and Cr. This study was carried out on continuous films and on patterned Ni dots. We observed that the Si/metal interaction occurring during growth plays a vital role in VACNFs formation on W, Mo, Pt and Pd metals. Structural and spectroscopic properties of the nanotube films were determined using electron microscopy (SEM and TEM) and Raman spectroscopy. All these results represents intermediate steps towards integration of MWCNT/ VACNFs into CNT-based devices. Making use of the thermal and electrical properties of carbon nanotubes, aligned MWCNT were tested in a microcooler channel device, while the VACNFs were involved in fabrication and measurement of nanoeletromechanical systems.


carbon nanotubes

carbon feedstock

chemical vapor deposition


dc-glow discharge plasma

growth mechanism

metal catalyst


Raluca Elena Morjan

Chalmers, Teknisk fysik





Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 2302