A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3
Artikel i vetenskaplig tidskrift, 2001

Modeling and flow reactor experiments were used to study the kinetics of NO, storage/release on a Pt/BaO/Al2O3 model catalyst. The mechanism for this concept can be divided into four steps: (i) NO to NO2 oxidation on Pt, (ii) NO2 storage on BaO, (iii) NO, release, and (iv) NO, reduction to N2. In this paper, we have focused on the first three steps. From the NO oxidation study on Pt/Al2O3 compared to Pt/BaO/Al2O3, we observed that the presence of BaO decreases the formation of NO2. To test the importance of this step for effective storage, experiments were performed with a Pt/Al2O3 catalyst placed before the Pt/BaO/Al2O3 catalyst. This resulted in increased NO, storage for the combined system compared to the Pt/BaO/Al2O3 case. To resolve the second and third steps, an experimental investigation of NOx storage/release on BaO/Al2O3 was performed using only NO2 and N2 in the gas feed. We propose a kinetic model, which first includes adsorption of NO2, which oxidizes the surface, followed by nitrate formation. Finally, NO3-BaO-NO2, i.e., Ba(NO3)2, is formed. By using the kinetic parameters from the NO oxidation on Pt/BaO/Al2O3 and the NO, storage on BaO/Al2O3, a kinetic model was constructed to describe NO, storage/release experiments on Pt/BaO/Al2O3. However, the rate for NO, release was increased when Pt was present, and the kinetic model could not accurately describe this phenomenon. Therefore, the mechanism was modified by including a reversible surface spillover step of NO2 between Pt sites and BaO sites. Further, experiments with NO2 exposure followed by a temperature ramp with NO/N2 showed that the desorption behaviors from the BaO/Al2O3 and Pt/BaO/Al2O3 were significantly different, which further supports the spillover mechanism. Finally, the models describing NO, storage on BaO/Al2O3 and on Pt/BaO/Al2O3 were successfully validated with independent experiments.

TEMPERATURE

STICKING

REDUCTION

PT(111)

OXYGEN

ADSORPTION

DESORPTION

DECOMPOSITION

CO

3-WAY CATALYST

Författare

Louise Olsson

Kompetenscentrum katalys (KCK)

Institutionen för kemisk reaktionsteknik

Hans Persson

Kompetenscentrum katalys (KCK)

Chalmers, Teknisk fysik

Erik Fridell

Kompetenscentrum katalys (KCK)

Chalmers, Teknisk fysik, Kemisk fysik

Magnus Skoglundh

Institutionen för teknisk ytkemi

Kompetenscentrum katalys (KCK)

Bengt Andersson

Institutionen för kemisk reaktionsteknik

Kompetenscentrum katalys (KCK)

Journal of Physical Chemistry B Materials

1089-5647 (ISSN)

Vol. 105 6895-6906

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Transport

Energi

Materialvetenskap

Ämneskategorier

Kemiteknik

DOI

10.1021/jp010324p