DataMeadow: a visual canvas for analysis of large-scale multivariate data
Artikel i vetenskaplig tidskrift, 2008

Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method.

Visual analytics

Dynamic queries

Multivariate data

Progressive analysis


Parallel coordinates


Niklas Elmqvist

Université Paris-Sud

Laboratoire de Recherche en Informatique

John Stasko

Georgia Institute of Technology

Philippas Tsigas

Chalmers, Data- och informationsteknik, Nätverk och system

Information Visualization

1473-8716 (ISSN) 1473-8724 (eISSN)

Vol. 7 1 18-33




Människa-datorinteraktion (interaktionsdesign)

Datavetenskap (datalogi)



Mer information

Senast uppdaterat