The freshman's approach to Conway's napkin problem
Artikel i vetenskaplig tidskrift, 2008

In the March 2006 issue of the MONTHLY, Claesson and Petersen gave a thorough solution to Conway's napkin problem. The problem is the following: Assume that n mathematicians arrive in random order at a conference dinner with a circular table, and that the napkins are placed exactly halfway between the plates so that the guests do not know whether they are supposed to use the right or the left napkin. Each guest prefers these napkins with probabilities p and 1-p, respectively, and tries her preferred alternative before trying the other, if the preferred napkin has been taken. Which proportion of guests is expected to sit down at a place where both adjacent napkins have been taken and thus be without a napkin? Claesson and Petersen use a system of generating functions to compute both the expectation and the variance of this proportion and to address similar questions, for instance regarding the number of guests who get a napkin though not the preferred one. However, these expectations can also be computed using purely elementary methods, such as the binomial theorem. We present the freshman's approach to the napkin problem and related problems, for instance the one with French diners mentioned, but not solved, by Claesson and Petersen.

permutationer. servettproblemet


Niklas Eriksen

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

American Mathematical Monthly

0002-9890 (ISSN)

Vol. 115 492-498


Diskret matematik