Unaligned Training for Voice Conversion based on a Local-nonlinear Principal Component Analysis Approach
Artikel i vetenskaplig tidskrift, 2009

During the past years, various principal component analysis algorithms have been developed. In this paper, a new approach for local nonlinear principal component analysis is proposed which is applied to capture voice conversion (VC). A new structure of autoassociative neural network is designed which not only performs data partitioning but also extracts nonlinear principal components of the clusters. Performance of the proposed method is evaluated by means of two experiments that illustrate its efficiency; at first, performance of the network is described by means of an artificial dataset and then, the developed method is applied to perform VC.

Unaligned voice conversion

Autoassociative neural network

Local nonlinear principal component analysis

Författare

Behrooz Makki

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Seyedali Seyedsalehi

Mona Noori-Hosseini

Nasser Sadati

Neural Computing and Applications

0941-0643 (ISSN) 1433-3058 (eISSN)

Vol. 19 3 437-444

Ämneskategorier

Elektroteknik och elektronik

DOI

10.1007/s00521-009-0275-x

Mer information

Senast uppdaterat

2018-08-07