Acoustic detection of melanosome transport in Xenopus laevis melanophores
Artikel i vetenskaplig tidskrift, 2013

Organelle transport studies are often performed using melanophores from lower vertebrates due to the ease of inducing movements of pigment granules (melanosomes) and visualizing them by optical microscopy. Here, we present a novel methodology to monitor melanosome translocation (which is a light-sensitive process) in the dark using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. This acoustic sensing method was used to study dispersion and aggregation of melanosomes in Xenopus laevis melanophores. Reversible sensor responses, correlated to optical reflectance measurements, were obtained by alternating addition and removal of melatonin (leading to melanosome aggregation) and melanocyte-stimulating hormone (MSH) (leading to melanosome dispersion). By confocal microscopy, it was shown that a vertical redistribution of melanosomes occurred during the dispersion/aggregation processes. Furthermore, the transport process was studied in the presence of cytoskeleton-perturbing agents disrupting either actin filaments (latrunculin) or microtubules (nocodazole). Taken together, these experiments suggest that the acoustic responses mainly originate from melanosome transport along actin filaments (located close to the cell membrane), as expected based on the penetration depth of the QCM-D technique. The results clearly indicate the potential of QCM-D for studies of intracellular transport processes in melanophores.





Xenopus laevis



Rickard Frost

Chalmers, Teknisk fysik, Biologisk fysik

Elisabeth Norström

Göteborgs universitet

Lovisa Bodin

Göteborgs universitet

Christoph Langhammer

Chalmers, Teknisk fysik, Kemisk fysik

Joachim Sturve

Göteborgs universitet

Margareta Wallin

Göteborgs universitet

Sofia Svedhem

Chalmers, Teknisk fysik, Biologisk fysik

Analytical Biochemistry

0003-2697 (ISSN) 1096-0309 (eISSN)

Vol. 435 1 10-18





Mer information