Confidence intervals for the critical value in the divide and color model
Artikel i vetenskaplig tidskrift, 2013

We obtain condence intervals for the location of the percolation phase transition in Häggström's divide and color model on the square lattice Z^2 and the hexagonal lattice H. The resulting probabilistic bounds are much tighter than the best deterministic bounds up to date; they give a clear picture of the behavior of the DaC models on Z^2 and H and enable a comparison with the triangular lattice T. In particular, our numerical results suggest similarities between DaC model on these three lattices that are in line with universality considerations, but with a remarkable difference: while the critical value function r_c(p) is known to be constant in the parameter p for p


stochastic domination

divide and color model

critical value



András Bálint

SAFER, Fordons- och trafiksäkerhetscentrum

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Chalmers, Tillämpad mekanik, Fordonssäkerhet

Vincent Beffara

Vincent Tassion


1980-0436 (ISSN)

Vol. 10 2 667-679


Grundläggande vetenskaper


Annan fysik

Sannolikhetsteori och statistik

Mer information