On the formulation of a computational homogenization scheme with seamless transition from compressible to incompressible microstructures
Övrigt konferensbidrag, 2013

In this paper, we discuss how the classical Dirichlet and Neumann boundary conditions in computational homogenization are applied to incompressible microstructures. We adopt a macroscale mixed velocity-pressure formulation that seamlessly handles the transition from compressible to incompressible microstructures. As a prototype problem, we consider liquid phase sintering, whereby the microstructure within a Representative Volume Element (RVE) is modeled as incompressible fluid particles with empty pores and with surface tension as the densifying mechanism. A porous ``green body'' thus evolves to a completely dense, and incompressible, microstructure. The example shows a numerical comparison between for a single RVE.

FE2

Incompressibility

Surface tension

Sintering

Multiscale

Neumann boundary conditions

Stokes' flow

Författare

Mikael Öhman

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

Fredrik Larsson

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

Kenneth Runesson

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

CMM 2013, 20th International Conference on Computer Methods in Mechanics 2013

Ämneskategorier (SSIF 2011)

Maskinteknik

Fundament

Grundläggande vetenskaper

Mer information

Skapat

2017-10-08