Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by
Artikel i vetenskaplig tidskrift, 2016

The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet-satellite systems. Aims. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. Methods. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. Results. We achieved, on average, mHz precision (30 mu m/s at a 10 s integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to similar to 50 m.

tracking

astrometry

methods: data analysis

techniques: interferometric

techniques: miscellaneous

vlbi

Författare

Dmitry Duev

Moscow State University

California Institute of Technology (Caltech)

Joint Institute for VLBI in Europe (JIVE)

Sergei Pogrebenko

Joint Institute for VLBI in Europe (JIVE)

G. Cimo

Joint Institute for VLBI in Europe (JIVE)

Netherlands Institute for Radio Astronomy (ASTRON)

G. M. Calves

Joint Institute for VLBI in Europe (JIVE)

Aalto-Yliopisto

T. M. B. Bahamon

Shanghai Astronomical Observatory

TU Delft

Joint Institute for VLBI in Europe (JIVE)

L. I. Gurvits

TU Delft

Joint Institute for VLBI in Europe (JIVE)

M. M. Kettenis

Joint Institute for VLBI in Europe (JIVE)

J. Kania

Joint Institute for VLBI in Europe (JIVE)

Carnegie Mellon University (CMU)

V. Tudose

Institute for Space Sciences, Bucharest

P. Rosenblatt

Royal Observatory of Belgium

J. C. Marty

Centre National d'Etudes Spatiales (CNES)

V. Lainey

IMCCE - Institut de Mecanique Celeste et de Calcul des Ephemerides

P. de Vicente

Observatorio de Yebes (IGN)

J. Quick

Hartebeeshoek Radio Astronomy Observatory

M. Nickola

Hartebeeshoek Radio Astronomy Observatory

A. Neidhardt

Federal Agency for Cartography and Geodesy (BKG)

G. Kronschnabl

Federal Agency for Cartography and Geodesy (BKG)

C. Ploetz

Federal Agency for Cartography and Geodesy (BKG)

Rüdiger Haas

Chalmers, Rymd- och geovetenskap, Onsala rymdobservatorium

Chalmers, Rymd- och geovetenskap, Rymdgeodesi och geodynamik

Michael Lindqvist

Chalmers, Rymd- och geovetenskap, Onsala rymdobservatorium

A. Orlati

Istituto nazionale di astrofisica (INAF)

A. V. Ipatov

Russian Academy of Sciences

M. A. Kharinov

Russian Academy of Sciences

A. G. Mikhailov

Russian Academy of Sciences

J. E. J. Lovell

University of Tasmania

J. N. McCallum

University of Tasmania

J. Stevens

Commonwealth Scientific and Industrial Research Organisation (CSIRO)

S. A. Gulyaev

Auckland University of Technology

T. Natush

Auckland University of Technology

S. Weston

Auckland University of Technology

W. H. Wang

Shanghai Astronomical Observatory

B. Xia

Shanghai Astronomical Observatory

W. J. Yang

Chinese Academy of Sciences

L. F. Hao

Chinese Academy of Sciences

J. Kallunki

Aalto-Yliopisto

O. Witasse

Europeiska rymdorganisationen (ESA)

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 593 A34 A34

Drivkrafter

Hållbar utveckling

Ämneskategorier

Astronomi, astrofysik och kosmologi

Fundament

Grundläggande vetenskaper

Infrastruktur

Onsala rymdobservatorium

DOI

10.1051/0004-6361/201628869

Mer information

Senast uppdaterat

2021-07-06