Applying geometric K-cycles to fractional indices
Artikel i vetenskaplig tidskrift, 2017
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A geometric model for twisted K-homology is introduced. It is modeled after the Mathai–Melrose–Singer fractional analytic index theorem in the same way as the Baum–Douglas model of K-homology was modeled after the Atiyah–Singer index theorem. A natural transformation from twisted geometric K-homology to the new geometric model is constructed. The analytic assembly mapping to analytic twisted K-homology in this model is an isomorphism for torsion twists on a finite CW-complex. For a general twist on a smooth manifold the analytic assembly mapping is a surjection. Beyond the aforementioned fractional invariants, we study T-duality for geometric cycles.
19K35
geometric K-homology
fractional analytic index
twisted K-homology
Primary: 19L50
Secondary: 55N20
index theory