Realizing the analytic surgery group of Higson and Roe geometrically part III: higher invariants
Artikel i vetenskaplig tidskrift, 2016

We construct an isomorphism between the geometric model and Higson-Roe’s analytic surgery group, reconciling the constructions in the previous papers in the series on “Realizing the analytic surgery group of Higson and Roe geometrically” with their analytic counterparts. Following work of Lott and Wahl, we construct a Chern character on the geometric model for the surgery group; it is a “delocalized Chern character”, from which Lott’s higher delocalized ρ-invariants can be retrieved. Following work of Piazza and Schick, we construct a geometric map from Stolz’ positive scalar curvature sequence to the geometric model of Higson-Roe’s analytic surgery exact sequence.

Författare

R.J. Deeley

University of Hawaii

Magnus C H T Goffeng

Leibniz Universität Hannover

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. 366 3-4 1513-1559

Fundament

Grundläggande vetenskaper

Ämneskategorier (SSIF 2011)

Geometri

Matematisk analys

DOI

10.1007/s00208-016-1365-6

Mer information

Senast uppdaterat

2021-05-10