Electrochemical lithiation of Ge: New insights by operando spectroscopy and diffraction
Artikel i vetenskaplig tidskrift, 2018

The relatively high cost of metallic germanium (Ge) as a lithium-ion battery negative electrode material is more than counterbalanced by its high capacity, high lithium diffusivity, and electronic conductivity. Using a unique and highly complementary set of operando characterization techniques, we propose a complete mechanism for the reversible lithiation of Ge. The electrochemical mechanism is found to be determined by the process of discharge/charge: (i) independent of the charge/discharge rate amorphous a-LiGe is proposed as the first intermediate during the lithiation of c-Ge, followed by Li 7 Ge 3 , and (ii) at low potential Li 15 Ge 4 is observed, but only for moderate rates and never at low rates, where indeed an "overlithiated" phase is preferred. The complementarity of the data obtained from XAS, Raman spectroscopies, and XRD, all in operando mode, was crucial in order to understand the complex mechanism based on reversible formation of the various crystalline and amorphous phases.

Författare

L. C. Loaiza

Université de Picardie Jules Verne

N. Louvain

Université de Montpellier

Centre national de la recherche scientifique (CNRS)

B. Fraisse

Université de Montpellier

Athmane Boulaoued

Université de Montpellier

Chalmers, Fysik, Kondenserade materiens fysik

A. Iadecola

Centre national de la recherche scientifique (CNRS)

Patrik Johansson

Chalmers, Fysik, Kondenserade materiens fysik

L. Stievano

Université de Montpellier

Centre national de la recherche scientifique (CNRS)

V. Seznec

Université de Picardie Jules Verne

Centre national de la recherche scientifique (CNRS)

L. Monconduit

Université de Montpellier

Centre national de la recherche scientifique (CNRS)

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 122 7 3709-3718

Ämneskategorier

Oorganisk kemi

Materialkemi

Annan fysik

Annan kemi

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Energi

Materialvetenskap

DOI

10.1021/acs.jpcc.7b11249

Mer information

Senast uppdaterat

2022-04-06