Water-assisted mixing and compression moulding of ethylene-acrylic acid copolymer reinforced with nano-cellulose
Licentiatavhandling, 2018
The CNF based composites showed an increase in strength and stiffness with increasing cellulose nanofibril content. At the highest loading content of 70 vol.% the composites exhibited an improved strength and stiffness by a factor of 3.5 and 21, respectively while still maintaining an elongation of 5 %. The composites with 20 vol.% cellulose content confirmed a well dispersed reinforcement in the matrix through computed tomography. The composites had a stiffening threshold around 30 vol.% CNF content which coincided with the CNF concentration at which the effective stiffness of the composite was maximum. Furthermore, the strength and strain at break of CNF composites were higher than pulp based composites but the same could not be said for the stiffness. The CNC based composites on the other hand showed a strong influence of the CNC on yield behaviour and ductility of the composites, especially at higher CNC contents (10 wt.%). Dynamic mechanical analysis revealed indications of strong interactions between the grafted components and the matrix or between the grafted components themselves which was confirmed by the mechanical test data. However, the improved thermal stability of the modified CNC (almost 100 °C improvement) was not observed when they were introduced into the composites owing to alkalinity of the matrix that resulted in degrafting.
thermal stability
cellulose nanocrystals
azetidinium
amphiphilic co-polymer
Nanocellulose
rheology
cellulose nanofibrils
water-assisted mixing.
Författare
Abhijit Venkatesh
Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial
Cellulose nanofibril-reinforced composites using aqueous dispersed ethylene-acrylic acid copolymer
Cellulose,; Vol. 25(2018)p. 4577-4589
Artikel i vetenskaplig tidskrift
L. Forsgren, K. Sahlin, A. Venkatesh, J. Thunberg, R. Kádár, A. Boldizar, G. Westman & M. Rigdahl. Composites with surface-grafted cellulose nanocrystals (CNC)
Tillverkning av nya högpresterande CNF biocompositer
Stiftelsen för Strategisk forskning (SSF) (GMT14-0036), 2020-01-01 -- 2020-12-31.
Stiftelsen för Strategisk forskning (SSF) (GMT14-0036), 2016-01-01 -- 2020-12-31.
Ämneskategorier
Polymerkemi
Polymerteknologi
Kompositmaterial och -teknik
Utgivare
Chalmers
Sunnanvinden, Hörsalvägen 5 (5th Floor, Johanneberg campus), Chalmers
Opponent: Adjunct Professor Bengt Hagström, Swerea IVF, Sweden