Random cover times using the Poisson cylinder process
Artikel i vetenskaplig tidskrift, 2019

In this paper we deal with the classical problem of random cover times. We investigate the distribution of the time it takes for a Poisson process of cylinders to cover a set A subset of R-d . This Poisson process of cylinders is invariant under rotations, reflections and translations, and in addition we add a time component so that cylinders are "raining from the sky" at unit rate. Our main results concerns the asymptotic of this cover time as the set A grows. If the set A is discrete and well separated, we show convergence of the cover time to a Gumbel distribution. If instead A has positive box dimension (and satisfies a weak additional assumption), we find the correct rate of convergence.

Poisson cylinder process

Cover times


Erik Broman

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Filipe Mussini

Uppsala universitet


1980-0436 (ISSN)

Vol. 16 2 1165-1199



Sannolikhetsteori och statistik

Matematisk analys


Grundläggande vetenskaper



Mer information

Senast uppdaterat