Regeneration of water-deactivated Cu/SAPO-34(MO) with acids
Artikel i vetenskaplig tidskrift, 2020

The Cu/SAPO-34 catalysts, used for NH3 selective catalytic reduction (SCR), are systemically studied with various characterization techniques before and after low temperature water deactivation and regeneration using techniques such as XRD, BET, ICP-SFMS, 27Al MAS NMR, 29Si MAS NMR, and H2-TPR. Analysis of results suggests that, during low-temperature water deactivation, hydrolysis of Si-O-Al occurs resulting in Si condensation and formation of Si clusters. It is proposed that these formed Si clusters are mainly responsible for the deactivation of Cu/SAPO-34 catalysts since they suppress the mobility of [Cu-(NH3)]+ and hinder the formation of the transient [CuI(NH3)2]+-O2-[CuI(NH3)2]+ intermediate, which is considered to be the rate-limiting step for NH3-SCR reaction. The regeneration of the deactivated Cu/SAPO-34 catalysts with acid can be explained by the ability of the acid to convert the Si clusters back to Si-O-H, which is able to revert to the SAPO-34 framework via reverse hydrolysis as the temperature increases.

Författare

Jung Won Woo

Chalmers, Kemi och kemiteknik, Kemiteknik

Kompetenscentrum katalys

Diana Bernin

Kompetenscentrum katalys

Chalmers, Kemi och kemiteknik, Kemiteknik

Homayoun Ahari

FCA US LLC

Mark Shost

FCA US LLC

Michael Zammit

FCA US LLC

Louise Olsson

Kompetenscentrum katalys

Chalmers, Kemi och kemiteknik, Kemiteknik

Catalysis Science and Technology

2044-4753 (ISSN) 2044-4761 (eISSN)

Vol. 10 5 1539-1550

Ämneskategorier

Kemiska processer

Annan kemiteknik

Organisk kemi

DOI

10.1039/c9cy02031d

Mer information

Senast uppdaterat

2021-02-08