Quenched exit times for random walk on dynamical percolation
Artikel i vetenskaplig tidskrift, 2018

We consider random walk on dynamical percolation on the discrete torus Z_n^d. In previous work, mixing times of this process for p < p_c(Z^d) were obtained in the annealed setting where one averages over the dynamical percolation environment. Here we study exit times in the quenched setting,
where we condition on a typical dynamical percolation environment. We obtain an upper bound for all p which for p < p_c matches the known lower bound.

hitting times

Dynamical percolation

random walk

mixing times

Författare

Yuval Peres

Microsoft Research

Perla Sousi

University of Cambridge

Jeffrey Steif

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Markov Processes and Related Fields

1024-2953 (ISSN)

Vol. 24 5 715-731

Färgning av slumpmässiga ekvivalensrelationer, slumpvandringar på dynamisk perkolation och bruskänslighet för gränsgrafen i den Erdös-Renyi-slumpgrafsmodellen

Vetenskapsrådet (VR) (2016-03835), 2017-01-01 -- 2020-12-31.

Stochastics for big data and big systems - bridging local and global

Knut och Alice Wallenbergs Stiftelse (KAW2012,0067), 2013-01-01 -- 2018-09-01.

Fundament

Grundläggande vetenskaper

Ämneskategorier (SSIF 2011)

Sannolikhetsteori och statistik

Mer information

Senast uppdaterat

2021-07-01