Tunable self-assembled Casimir microcavities and polaritons
Artikel i vetenskaplig tidskrift, 2021

Spontaneous formation of ordered structures—self-assembly—is ubiquitous in nature and observed on different length scales, ranging from atomic and molecular systems to micrometre-scale objects and living matter1. Self-ordering in molecular and biological systems typically involves short-range hydrophobic and van der Waals interactions2,3. Here we introduce an approach to micrometre-scale self-assembly based on the joint action of attractive Casimir and repulsive electrostatic forces arising between charged metallic nanoflakes in an aqueous solution. This system forms a self-assembled optical Fabry–Pérot microcavity with a fundamental mode in the visible range (long-range separation distance about 100–200 nanometres) and a tunable equilibrium configuration. Furthermore, by placing an excitonic material in the microcavity region, we are able to realize hybrid light–matter states (polaritons4–6), whose properties, such as coupling strength and eigenstate composition, can be controlled in real time by the concentration of ligand molecules in the solution and light pressure. These Casimir microcavities could find future use as sensitive and tunable platforms for a variety of applications, including opto-mechanics7, nanomachinery8 and cavity-induced polaritonic chemistry9.


Battulga Munkhbat

Chalmers, Fysik, Nano- och biofysik

Adriana Canales Ramos

Chalmers, Fysik, Nano- och biofysik

Betül Kücüköz

Chalmers, Fysik, Nano- och biofysik

Denis Baranov

Moscow Institute of Physics and Technology

Chalmers, Fysik, Nano- och biofysik

Timur Shegai

Chalmers, Fysik, Nano- och biofysik


0028-0836 (ISSN) 1476-4687 (eISSN)

Vol. 597 7875 214-219


Fysikalisk kemi

Atom- och molekylfysik och optik

Annan kemi



Mer information

Senast uppdaterat