Orbital-selective metal skin induced by alkali-metal-dosing Mott-insulating Ca2RuO4
Artikel i vetenskaplig tidskrift, 2023

Doped Mott insulators are the starting point for interesting physics such as high temperature superconductivity and quantum spin liquids. For multi-band Mott insulators, orbital selective ground states have been envisioned. However, orbital selective metals and Mott insulators have been difficult to realize experimentally. Here we demonstrate by photoemission spectroscopy how Ca2RuO4, upon alkali-metal surface doping, develops a single-band metal skin. Our dynamical mean field theory calculations reveal that homogeneous electron doping of Ca2RuO4 results in a multi-band metal. All together, our results provide evidence for an orbital-selective Mott insulator breakdown, which is unachievable via simple electron doping. Supported by a cluster model and cluster perturbation theory calculations, we demonstrate a type of skin metal-insulator transition induced by surface dopants that orbital-selectively hybridize with the bulk Mott state and in turn produce coherent in-gap states.

Författare

M. Horio

University of Tokyo

Universität Zürich

Filomena Forte

Universita degli Studi di Salerno

SPIN CNR Institute - Salerno

D. Sutter

Universität Zürich

Minjae Kim

Université Paris-Saclay

Collège de France

Korea Institute for Advanced Study

C. G. Fatuzzo

Universität Zürich

C. E. Matt

Universität Zürich

Simon Moser

Lawrence Berkeley National Laboratory

Julius-Maximilians Universität Würzburg

Tetsuya Wada

University of Tokyo

Veronica Granata

Universita degli Studi di Salerno

R. Fittipaldi

Universita degli Studi di Salerno

SPIN CNR Institute - Salerno

Yasmine Sassa

Chalmers, Fysik, Materialfysik

Gianmarco Gatti

Université de Genève

Ecole Polytechnique Federale de Lausanne (EPFL)

H. M. Rønnow

Ecole Polytechnique Federale de Lausanne (EPFL)

M. Hoesch

Diamond Light Source

Deutsches Elektronen-Synchrotron (DESY)

Timur K. Kim

Diamond Light Source

Chris Jozwiak

Lawrence Berkeley National Laboratory

Aaron Bostwick

Lawrence Berkeley National Laboratory

E. Rotenberg

Lawrence Berkeley National Laboratory

Iwao Matsuda

University of Tokyo

A. Georges

Université de Genève

Université Paris-Saclay

Collège de France

Flatiron Institute

Giorgio Sangiovanni

Julius-Maximilians Universität Würzburg

A. Vecchione

SPIN CNR Institute - Salerno

Universita degli Studi di Salerno

M. Cuoco

Universita degli Studi di Salerno

SPIN CNR Institute - Salerno

J. Chang

Universität Zürich

Communications Physics

23993650 (eISSN)

Vol. 6 1 323

Framtidens Lågdimensionella Skyrmion Material

Vetenskapsrådet (VR) (2017-05078), 2019-06-01 -- 2021-12-31.

Ämneskategorier

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

DOI

10.1038/s42005-023-01436-1

Mer information

Senast uppdaterat

2023-12-05