A Review and Case Study of Neural Network Techniques for Automated Generation of High Level-of-Detail 3D City Models
Paper i proceeding, 2023

The growing interest in creating digital twins of cities has sparked a surge in the development of detailed 3D models. In this paper we examine the current state-of-the-art in generating high-resolution 3D models of cities using neural network techniques. Additionally, we showcase the outcomes of two case studies that demonstrate the practical applications of these techniques in 3D city model generation. The first case study focuses on rooftop segmentation using publicly available Swedish cadastral data, while the second case study explores façade feature extraction using Google Street View data.

Digital twins of cities

3D city models

Neural networks

Författare

Vasilis Naserentin

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Georgios Spaias

Aristotelio Panepistimio Thessalonikis

Anestis Kaimakamidis

Aristotelio Panepistimio Thessalonikis

Nikos Pitsianis

Aristotelio Panepistimio Thessalonikis

Anders Logg

Göteborgs universitet

Springer Proceedings in Mathematics and Statistics

21941009 (ISSN) 21941017 (eISSN)

Vol. 429 261-283
9783031358708 (ISBN)

Annual workshops for Swedish Alumni Club of Japan Society for the Promotion of Science, JSPS/SAC 2021 and 2022
Virtual, Online, ,

Digital Twin Cities Centre

VINNOVA (2019-00041), 2020-02-29 -- 2024-12-31.

Ämneskategorier

Systemvetenskap

DOI

10.1007/978-3-031-35871-5_15

Mer information

Senast uppdaterat

2024-01-03