Synthesis, Characterization, and Devices of a Series of Alternating Copolymers for Solar Cells
Journal article, 2009

In this study we report the synthesis, characterization, and photovoltaic properties of a series of six conjugated polymers based on donor−acceptor−donor (DAD) structure. The polymers are obtained via Suzuki polymerization of different alkoxy-substituted DAD monomers together with a substituted fluorene or phenylene monomer. Application of polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with both [60]PCBM and [70]PCBM as acceptors, show power-conversion efficiencies (PCEs) up to 2.9%, values obtained without extensive optimization work. Furthermore, atomic force microscopy and field-effect transistor (FET) mobility measurements of acceptor−polymer mixtures show that differences in substitution on the polymers affect morphology, mobility, and device performance. Within the series of polymers, all showing similar optical absorption and redox behavior, substituents play an important role in phase separation on a micrometer scale, which in turn has a large impact on device performance. The phase-separation behavior is clearly seen in [70]PCBM devices where the best-performing devices are obtained using the polymers with short alkoxy groups or no substituents together with a high speed of spin coating during device preparation.

Author

Lars Johan Lindgren

Chalmers, Chemical and Biological Engineering, Polymer Technology

Fengling Zhang

Linköping University

Mattias Andersson

Linköping University

Sophie Barrau

Linköping University

Stefan Hellström

Chalmers, Chemical and Biological Engineering, Polymer Technology

Wendimagegn Mammo

Chalmers, Chemical and Biological Engineering, Polymer Technology

Erik Per Perzon

Chalmers

Olle Inganäs

Linköping University

Mats Andersson

Chalmers, Chemical and Biological Engineering, Polymer Technology

Chemistry of Materials

0897-4756 (ISSN) 1520-5002 (eISSN)

Vol. 21 15 3491-3502

Subject Categories

Polymer Chemistry

DOI

10.1021/cm802949g

More information

Latest update

9/10/2018