Frontal Impact Dummy Kinematics in Oblique Frontal Collisions: Evaluation against Post Mortem Human Subject Test Data
Journal article, 2005

Objective Today, a predominant percentage of vehicles involved in car crashes are exposed to oblique or frontal offset collisions. The aim of this study is to evaluate the 50th percentile male Hybrid III, THOR 99 and THOR Alpha dummies by comparing them with the corresponding kinematics of post mortem human subjects (PMHS) in this type of collision. Methods The PMHS data include results from oblique frontal collision tests. They include sled tests with near-side and far-side belt geometries at 15°, 30° and 45° angles. The test subjects were restrained with a three-point lap-shoulder belt and the ?V was 30 km/h. Results The results from the Hybrid III and THOR 99 tests showed that, in most of the test, the head trajectories were an average of approximately 0.1 m shorter than those from equivalent PMHS. The Hybrid III and THOR 99 far-side belt geometry tests showed that the belt remained in place longer on the shoulder of the Hybrid III than on the THOR 99 and the THOR Alpha. This was probably due to a stiffer lumbar spine in the Hybrid III and to a large groove in the steel of the superior surface of the Hybrid III shoulder structure. The THOR 99 escaped from the shoulder belt about 40 - 50 ms earlier than the THOR Alpha. The results from the THOR Alpha tests show that the head trajectory accorded fairly well with the PMHS data, as long as the shoulder belt did not slip off the shoulder. Although the THOR Alpha shoulder escaped the shoulder belt in the 45° far-side belt geometry, the PMHS did not. This may be due to the THOR Alpha shoulder design, with approximately 0.05 m smaller superior and medial shoulder range-of-motion, in combination with a relatively soft lumbar spine. Conclusions The THOR Alpha provides head trajectories similar to those of the PMHS under these loading conditions, provided the shoulder belt remains in position on the shoulder. When the shoulder belt slipped off the dummy shoulder, the head kinematics was altered. The shoulder range-of-motion may be a contributing factor to the overall kinematics of an occupant in oblique frontal impact situations where the occupant moves in a trajectory at an angle from that of the longitudinal direction of the car.

Oblique frontal collision

Crash test dummy

Kinematics

Sled tests

Shoulder

Post Mortem Human Subjects (PMHS)

Hybrid III

THOR

Author

Fredrik Törnvall

Chalmers, Applied Mechanics

Chalmers, Applied Mechanics, Vehicle Safety

Mats Svensson

Chalmers, Applied Mechanics, Vehicle Safety

Johan Davidsson

Chalmers, Applied Mechanics

Chalmers, Applied Mechanics, Vehicle Safety

Demitrios Kallieris

Yngve Håland

Chalmers, Applied Mechanics, Vehicle Safety

Chalmers, Applied Mechanics

Traffic Injury Prevention

1538-9588 (ISSN) 1538-957X (eISSN)

Vol. 6 4 340-350

Subject Categories (SSIF 2011)

Mechanical Engineering

More information

Created

10/6/2017