MDS study on the adhesive heat transfer in micro-channel cooler
Paper in proceeding, 2010

Carbon nanotube (CNT) can be used in micro-channel cooler construction due to its excellent thermal conductivity. When fabricating CNTs directly onto the chip, the chip could be damaged because of the high temperature required for CNT growth (about 750°C). As a solution, a transfer technique is developed where the desired carbon nanotube pattern can be obtained by taking off a pre-fabricated CNT forest with a designed adhesive, and the transfer process could make the chip or other components immune from the high temperature required for the CNT growth process. This process can also improve the bonding/adhesive strength. Nevertheless, the use of adhesive in the CNT-based micro-channel structure might affect the thermal conduction of the cooling system. In particular, the heat transfer between the heat generator and the CNT fin in the micro-channel cooler shall be evaluated. In this paper the thermal conductivity of the adhesive is studied by molecular dynamics simulation (MDS). The adhesive considered in the present MDS model consists of the epoxy and the curing agent. After the curing process, the epoxy molecules construct a network, which is established in the epoxy matrix generation before the simulation. Nonequilibrium Molecular Dynamics Method (NEMD) is adopted in the modeling and periodic boundary conditions are applied. Furthermore, the heat transfer through CNT and adhesive interface is simulated in this work based on the adhesive results, which can provide information for future macro-analysis of the thermal performance of the CNT microchannel cooler. © 2010 IEEE.

Author

Shun Wang

Shanghai University

Y. Zhang

Shanghai University

Zhili Hu

Chalmers, Applied Physics, Electronics Material and Systems

Johan Liu

Chalmers, Applied Physics, Electronics Material and Systems

Proceedings - 2010 11th International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2010; Xi'an; 16 August 2010 through 19 August 2010

Article number 5583859 630-633
978-142448142-2 (ISBN)

Subject Categories

Physical Sciences

DOI

10.1109/ICEPT.2010.5583859

ISBN

978-142448142-2

More information

Created

10/7/2017