New fast curing isotropic conductive adhesive for electronic packaging application
Paper in proceeding, 2010

With the rapid development of technologies on high density assembly and packaging in electronic industry, isotropic conductive adhesive (ICA) has been paid more and more attention as a potential substitute of solder, due to its advantages of low processing temperature, simple processing conditions and good manufacturability. However, the curing time of most traditional ICA is more than half an hour. The process duration of ICA is 2 or 3 times longer than that of solder. Thus, low efficiencies of energy using and product manufacturing has been one of factors which limits widely application of ICA. Generally, the curing speed of ICA depends on types and amount of curing agent as well as curing temperature. In our previous experiments, the effects of curing temperature and amount of curing agent have been investigated. So, the present work attempts to choose a new kind of curing agent to shorten process duration of ICA. By using new curing agent, the curing duration of ICA could be shortened in 5 minutes with a high curing rate compared with the previous version. In addition, the basic performance including bulk resistivity and viscosity are also investigated in this work. Finally, we present some discussions about the further optimization of performance, for example regarding the ways of achieving better electrical conductivity with lower filler content and improvement of viscosity etc. © 2010 IEEE.

Author

Wenhui Du

Shanghai University

C. Fu

Shanghai University

Si Chen

Shanghai University

SMIT Ltd. Co.

H. Cui

Shanghai University

X. Liu

SMIT Ltd. Co.

T. Chen

Shanghai University

Johan Liu

Chalmers, Applied Physics, Electronics Material and Systems

Proceedings - 2010 11th International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2010; Xi'an; 16 August 2010 through 19 August 2010

Article number 5582446 199-201
978-142448142-2 (ISBN)

Subject Categories

Physical Sciences

DOI

10.1109/ICEPT.2010.5582446

ISBN

978-142448142-2

More information

Created

10/8/2017