Hybrid Discontinuous Finite Element/Finite Difference Method for Maxwell's Equations
Paper in proceeding, 2010

A fully explicit, discontinuous hybrid finite element/finite difference method is proposed for the numerical solution of Maxwell's equations in the time domain. We call the method hybrid since the different numerical methods, interior penalty discontinuous finite element method, developed in [1], and finite difference method [2], are used in different parts of the computational domain. Thus, the flexibility of finite elements is combined with the efficiency of finite differences. Our numerical experiment illustrates stability of the proposed new method.

adaptive finite element method

Maxwell's equations

discontinuous finite element method

hybrid FEM/FDM methods

Author

Larisa Beilina

Chalmers, Mathematical Sciences, Mathematics

University of Gothenburg

AIP Conference Proceedings

0094-243X (ISSN) 1551-7616 (eISSN)

Vol. 1281 324-328
978-0-7354-0834-0 (ISBN)

Subject Categories (SSIF 2011)

Computational Mathematics

DOI

10.1063/1.3498465

ISBN

978-0-7354-0834-0

More information

Created

10/8/2017